Rainfall Analysis

Prof. M.M.M. Najim

Learning Outcome

- At the end of this section students will be able to
 - Estimate long term mean rainfall for a new station
 - Describe the usage of a hyetograph
 - Define recurrence interval and apply the concept of recurrence interval in rainfall analysis
 - Define rainfall frequency and apply Weibull's formula to find recurrence interval
 - Calculate expected maximum and minimum rainfall

Long term mean rainfall for a new station

- Newly established station has only few years records
- Adjacent station with similar hydrologic conditions used
 - Let us assume A and B stations
 - A has long term data and B is new

- Step 1 Mean Rainfall for station A (A_{mt}) $A_{mt} = \frac{Total \ Rainint \ years}{t}$
- Step 2

Mean rainfall for station A for the years in which B has data $A_{mR} = \frac{Amount of Rain for short years (b) at station A}{A_{mR}} = \frac{Amount of Rain for Short years (b) at station A}{Amathbb{A}}$

Number of years B has records (b)

• Step 3

Mean rainfall of station B

$$B_{m} = \frac{Amount of Rain at station B}{Number of years (b)}$$

• Step 4

Long term mean rainfall of station B

$$\frac{B_{mt}}{B_m} = \frac{A_{mt}}{A_{mB}}$$

Hyetograph

- Plot of rainfall intensity and time interval.
- Used in hydrological analysis of catchment for
 - prediction of flood
 - estimation of runoff
 - Derivation of unit hydrograph
- Area under hyetogrpah is total rainfall

Time (h)

Mass Curve

• Plot of accumulated rainfall against time

Time	Cumulative Time	Cumulative Rainfall
4-6	0	0
6-8	2	4
8-10	4	12
10-12	6	24
12-14	8	34
14-16	10	42
16-18	12	46
18-20	14	46
20-22	16	52
22-24	18	54

- Can determine magnitude and duration of storm
- Slope of curve give intensity at various time

– Considers the event from 4 – 6 hour

Intensity = (24 - 12) / (6 - 4) = 6 mm/h

Intensity-Duration-Frequency Relationship

- rainfall duration increases when intensity decreases and vice-versa
- rainfall intensity increases when return period increases and vice-versa
 - Return period (recurrence interval) : Number of years in which an event can be expected once.
 - Needed to know in designing dams, bridges, culverts etc.

 Return period is related with intensity, duration and frequency by

$$i = \frac{KT^a}{\left(t+b\right)^d}$$

- i average rainfall intensity (cm/h)
- t duration of rainfall (h)
- T return period (year)
- K, a, b and d are constants (depend on geographical location)

- What will be the intensity for a shorter period
 - 10 minutes, 20 minutes, 40 minutes, 1 hour, 2 hour events (for 5 year return period)
 - 10 min > 20 min> 40 min > 1 h > 2 h
 - What will happen to intensity if return period increase (10 min for return periods 5, 10, 20, 25 etc. years)
 - Intensity will increase

- For a given catchment (watershed), runoff generated will change with intensity of rainfall (Area is same, vegetation is same)
- When intensity changes runoff volume and rate changes. Therefore, we have to consider intensity in designing structures.
- For soil conservation return period 10 years, culverts – 25 years, bridges – 500 – 1000 years

Rainfall frequency

 Design of hydraulic structures, flood control structures, soil conservation structures, drains, culverts etc. are based on probability of occurrence of extreme rainfall events.

$$T = \frac{1}{P}$$

- T = return period
- P = Plotting position (Probability)
- Frequency analysis is done to obtain relation between magnitude of events and probability.

$$P = \left(\frac{m}{n+1}\right) 100$$
 Weibull's Formula

- P = Probability or plotting position (%)m = rank number (after arranging in descending order)
- n = total number of events

• There are many formulas to calculate P (Gumbel, Hazen, Blom etc.)

Procedure

- Arrange rainfall data in ascending order
- Assign rank number starting from 1
- Calculate plotting position
- Plot plotting position on log scale (X axis) and corresponding rainfall on Y axis (Use semi log sheet)
- Draw the curve Rainfall frequency curve
- Using calculation, can find recurrence interval

		Plotting	Recurrence
Rainfall	Rank No.	Position	Interval
2077.7	1	4.8	21.0
1954.1	2	9.5	10.5
1829.2	3	14.3	7.0
1770	4	19.0	5.3
1495.7	5	23.8	4.2
1416.1	6	28.6	3.5
1344.9	7	33.3	3.0
1298.2	. 8	38.1	2.6
1265	9	42.9	2.3
1202.2	10	47.6	2.1
1166.4	11	52.4	1.9
1153.69	12	57.1	1.8
1152.5	13	61.9	1.6
1129.6	14	66.7	1.5
1080.25	15	71.4	1.4
1014.3	16	76.2	1.3
780.5	17	81.0	1.2
756.6	18	85.7	1.2
749.1	19	90.5	1.1
732.8	20	95.2	1.1

Expected maximum and minimum rainfall

$$T = \frac{n}{(m - 0.5)}$$

Hazen Formula

- T recurrence interval
- n total events
- m rank number

- Arrange observed rainfall in descending order (ascending order for minimum rainfall)
- Assign rank number
- Calculate recurrence interval
- Plot recurrence interval (X axis) and rainfall (Y axis)
- Draw curve and predict expected maximum or minimum rainfall using graph

Rainfall	Rank	Recurrence Interval
115	1	36.0
112	2	12.0
105	3	7.2
102	4	5.1
100	5	4.0
90	6	3.3
86	7	2.8
85	8	2.4
82	9	2.1
75	10	1.9
70	11	1.7
66	12	1.6
65	13	1.4
55	14	1.3
50	15	1.2
45	16	1.2
40	17	1.1
35	18	1.0

Expected Maximum

Rainfall	Rank	Recurrence Interval
35	1	36.0
40	2	12.0
45	3	7.2
50	4	5.1
55	5	4.0
65	6	3.3
66	7	2.8
70	8	2.4
75	9	2.1
82	10	1.9
85	11	1.7
86	12	1.6
90	13	1.4
100	14	1.3
102	15	1.2
105	16	1.2
112	17	1.1
115	18	1.0

Expected Minimum

