Rainfall Analysis

Prof. M.M.M. Najim

Learning Outcome

- At the end of this section students will be able to
- Estimate long term mean rainfall for a new station
- Describe the usage of a hyetograph
- Define recurrence interval and apply the concept of recurrence interval in rainfall analysis
- Define rainfall frequency and apply Weibull's formula to find recurrence interval
- Calculate expected maximum and minimum rainfall

Long term mean rainfall for a new

station

- Newly established station has only few years records
- Adjacent station with similar hydrologic conditions used
- Let us assume A and B stations
- A has long term data and B is new
- Step 1

Mean Rainfall for station $\mathrm{A}\left(\mathrm{A}_{\mathrm{mt}}\right)$

$$
A_{m t}=\frac{\text { Total Rainint years }}{t}
$$

- Step 2

Mean rainfall for station A for the years in which
B has data

$$
A_{m B}=\frac{\text { Amount of Rain for short years }(b) \text { at station } A}{\text { Number of years } B \text { has records }(b)}
$$

- Step 3

Mean rainfall of station B

$$
B_{m}=\frac{\text { Amount of Rain at station B }}{\text { Number of years }(b)}
$$

- Step 4

Long term mean rainfall of station B

$$
\frac{B_{m t}}{B_{m}}=\frac{A_{m t}}{A_{m B}}
$$

Hyetograph

- Plot of rainfall intensity and time interval.
- Used in hydrological analysis of catchment for
- prediction of flood
- estimation of runoff
- Derivation of unit hydrograph
- Area under hyetogrpah is total rainfall

Mass Curve

- Plot of accumulated rainfall against time

Time	Cumulative Time	Cumulative Rainfall
$4-6$	0	0
$6-8$	2	4
$8-10$	4	12
$10-12$	6	24
$12-14$	8	34
$14-16$	10	42
$16-18$	12	46
$18-20$	14	46
$20-22$	16	52
$22-24$	18	54

- Can determine magnitude and duration of storm
- Slope of curve give intensity at various time
- Considers the event from 4-6 hour

Intensity $=(24-12) /(6-4)=6 \mathrm{~mm} / \mathrm{h}$

Intensity-Duration-Frequency

Relationship

- rainfall duration increases when intensity decreases and vice-versa
- rainfall intensity increases when return period increases and vice-versa
- Return period (recurrence interval) : Number of years in which an event can be expected once.
- Needed to know in designing dams, bridges, culverts etc.
- Return period is related with intensity, duration and frequency by

$$
i=\frac{K T^{a}}{(t+b)^{d}}
$$

i - average rainfall intensity (cm/h)
t - duration of rainfall (h)
T - return period (year)
K, a, b and d are constants (depend on geographical location)

- What will be the intensity for a shorter period
- 10 minutes, 20 minutes, 40 minutes, 1 hour, 2 hour events (for 5 year return period)
- $10 \mathrm{~min}>20 \mathrm{~min}>40 \mathrm{~min}>1 \mathrm{~h}>2 \mathrm{~h}$
- What will happen to intensity if return period increase (10 min for return periods 5, 10, 20, 25 etc. years)
- Intensity will increase

- For a given catchment (watershed), runoff generated will change with intensity of rainfall (Area is same, vegetation is same)
- When intensity changes runoff volume and rate changes. Therefore, we have to consider intensity in designing structures.
- For soil conservation return period - 10 years, culverts - 25 years, bridges - 500-1000 years

Rainfall frequency

- Design of hydraulic structures, flood control structures, soil conservation structures, drains, culverts etc. are based on probability of occurrence of extreme rainfall events.

$$
T=\frac{1}{P}
$$

T = return period
$\mathrm{P}=$ Plotting position (Probability)

- Frequency analysis is done to obtain relation between magnitude of events and probability.

$$
P=\left(\frac{m}{n+1}\right) 100 \quad \text { Weibull's Formula }
$$

$\mathrm{P}=$ Probability or plotting position (\%)
$\mathrm{m}=$ rank number (after arranging in descending order)
$\mathrm{n}=$ total number of events

- There are many formulas to calculate P (Gumbel, Hazen, Blom etc.)

Procedure

- Arrange rainfall data in ascending order
- Assign rank number starting from 1
- Calculate plotting position
- Plot plotting position on log scale (X axis) and corresponding rainfall on Y axis (Use semi log sheet)
- Draw the curve - Rainfall frequency curve
- Using calculation, can find recurrence interval

Rainfall	Rank No.	Plotting Position	Recurrence Interval
2077.7	1	4.8	21.0
1954.1	2	9.5	10.5
1829.2	3	14.3	7.0
1770	4	19.0	5.3
1495.7	5	23.8	4.2
1416.1	6	28.6	3.5
1344.9	7	33.3	3.0
1298.2	8	38.1	2.6
1265	9	42.9	2.3
1202.2	10	47.6	2.1
1166.4	11	52.4	1.9
1153.69	12	57.1	1.8
1152.5	13	61.9	1.6
1129.6	14	66.7	1.5
1080.25	15	71.4	1.4
1014.3	16	76.2	1.3
780.5	17	81.0	1.2
756.6	18	85.7	1.2
749.1	19	90.5	1.1
732.8	20	95.2	1.1

Expected maximum and minimum

rainfall

$$
T=\frac{n}{(m-0.5)}
$$

Hazen Formula
T - recurrence interval
n - total events
m - rank number

- Arrange observed rainfall in descending order (ascending order for minimum rainfall)
- Assign rank number
- Calculate recurrence interval
- Plot recurrence interval (X axis) and rainfall (Y axis)
- Draw curve and predict expected maximum or minimum rainfall using graph

Rainfall	Rank	Recurrence Interval
115	1	36.0
112	2	12.0
105	3	7.2
102	4	5.1
100	5	4.0
90	6	3.3
86	7	2.8
85	8	2.4
82	9	2.1
75	10	1.9
70	11	1.7
66	12	1.6
65	13	1.4
55	14	1.3
50	15	1.2
45	16	1.2
40	17	1.1
35	18	1.0

Expected Maximum

Rainfall	Rank	Recurrence Interval
35	1	36.0
40	2	12.0
45	3	7.2
50	4	5.1
55	5	4.0
65	6	3.3
66	7	2.8
70	8	2.4
75	9	2.1
82	10	1.9
85	11	1.7
86	12	1.6
90	13	1.4
100	14	1.3
102	15	1.2
105	16	1.2
112	17	1.1
115	18	1.0

Expected Minimum

